
Designing a Unique

Single Point

Cross Over Method

Thesis Project
Student Richard Phillip Wilson
Advisor : Dr. Clinton Lee
Professor: Abdollah Homaifar

Introduction

The idea behind GA's is to extract optimization strategies nature uses successfully -

known as Darwinian Evolution - and transform them for application in mathematical

optimization theory to find the global optimum in a defined phase space.

One could imagine a population of individual "explorers" sent into the optimization

phase-space. Each explorer is defined by its genes, what means, its position inside the

phase-space is coded in his genes. Every explorer has the duty to find a value of the

quality of his position in the phase space. (Consider the phase-space being a number of

variables in some technological process, the value of quality of any position in the phase

space - in other words: any set of the variables - can be expressed by the yield of the

desired chemical product.) Then the struggle of "life" begins. The three fundamental

principles are

1.Selection

2.Mating/Crossover
3.Mutation

Only explorers (= genes) sitting on the best places will reproduce and create a new

population. This is performed in the second step (Mating/Crossover). The "hope" behind

this part of the algorithm is, that "good" sections of two parents will be recombined to yet

better fitting children. In fact, many of the created children will not be successful (as in

biological evolution), but a few children will indeed fulfill this hope. These "good"

sections are named in some publications as building blocks.

Now there appears a problem. Repeating these steps, no new area would be explored. The

two former steps would only exploit the already known regions in the phase space, which

could lead to premature convergence of the algorithm with the consequence of missing

the global optimum by exploiting some local optimum.

The third step - the Mutation ensures the necessary accidental effects. One can imagine

the new population being mixed up a little bit to bring some new information into this set

of genes.

Whereas in biology a gene is described as a macro-molecule with four different bases to

code the genetic information, a gene in genetic algorithms is usually defined as a bitstring

(a sequence of b l's and O's). (1)

2.Genetic Algorithms

Initial Population

As described previously, a gene is a string of bits. The initial population of genes

(bitstrings) is usually created randomly. The length of the bitstring is depending on the

problem to be solved.

Selection

Selection means to extract a subset of genes from an existing (in the first step, from the

initial -) population, according to any definition of quality. In fact, every gene must have

a meaning, so one can derive any kind of a quality measurement from it - a "value".

Following this quality "value" (fitness), Selection can be performed

e.g. by Selection proportional to fitness:

1.Consider the population being rated, that means: each gene has a related fitness.

The higher the value of the fitness, the better.

2.The mean-fitness of the population will be calculated.

3.Every individuum (=gene) will be copied as often to the new population, the

better it fitness is, compared to the average fitness. E.g.: the average fitness is
5.76, the fitness of one individuum is 20.21.

4.Following this steps, one can prove, that in many cases the new population will

be a little smaller, than the old one. So the new population will be filled up with

randomly chosen individual from the old population to the size of the old one.

Remember, that there are a lot of different implementations of these algorithms. For

example the Selection module is not always creating constant population sizes. In some

implementations the size of the population in dynamic. Furthermore, there exist a lot of

other types of selection algorithms (the most important ones are: Proportional Fitness,

Binary Tournament, Rank Based)..

Mating/Crossover
Parents

1 1 0 0 1 0 1 1 1

0 0 1 0 0 1 1 0 1
A

Children

1 l 0 0 0 1 1 0 l

0 0 1 0 1 0 1 1 1

Fig.2. Crossover

The next stepsin creatinga newpopulationare theMating andCrossover:As described
in theprevioussectionthereexist alsoa lot of different typesof Mating/Crossover.One
easyto understandtype is the randommating with a definedprobability andthe b_nX
crossovertype.This type is describedmostoften, asthe parallelto theCrossingOver in
geneticsis evident:

1.PMpercentof the individuaof thenewpopulationwill beselectedrandomlyand
matedin pairs.

2.A crossoverpoint (seefig.2) will bechosenfor eachpair
3.Theinformationafterthecrossover-pointwill beexchangedbetweenthetwo

individuaof eachpair.

In fact,moreoften a slightly differentalgorithmcalledb_uX is used.This crossovertype
usuallyoffershigherperformancein thesearch.

1.PMpercentof the individuaof thenewpopulationwill beselectedrandomlyand
matedin pairs.

2.With theprobabilityPC,two bits in thesamepositionwill beexchangedbetweenthe
two individua.Thusnot only onecrossoverpoint is chosen,buteachbit hasacertain
probabilityto getexchangedwith its counterpartin theothergene.(This is calledthe
uniform operator)

Mutation

0 1 0 1 0 1 1

M M

1 0 0 1 0 0 0

Fig.3. Mutation

The last step is the Mutation, with the sense of adding some effect of exploration of the

phase-space to the algorithm. The implementation of Mutation is - compared to the other

modules - fairly trivial: Each bit in every gene has a defined Probability P to get inverted.

(1)

3.Motivation of my method

The search space for the traveling salesman problem is the set of permutations of the

cities. The most natural way to represent a tour is through path representation, where

the cities are listed in the order in which they are visited . As an example of path

representation, assume that there are six cities: { 1, 2, 3, 4,5,6}. The tour denoted by { 1 2

3 4 5 6) would be interpreted to mean that the salesman visits city lfirst, city 2 second,

city 3 third returning to city 1 from city 6. Although this representation seems

natural enough, there are at least two drawbacks to it. The first is that it is not unique.

For example, (2 3 4 5 6 1) and (3 4 5 6 1 2) actually represents the same tour as (1 2 3 4 5

6); that is, the representation is unique only as far as the direction of traversal - clockwise

or counterclockwise- and the originating city. This representational ambiguity generally

confounds the GA. The second drawback is that a simple crossover operator could fail to

produce legal tours. For example, The following strings with cross site 3 fail to produce

legal tours. For example, the following strings with the cross site 3 fail to produce legal

tours.(2)

Before crossover (1 2 3 4 5 6)

(2 4 5 6 3 1)
A

After crossover (1 2 3 6 3 1)

(2 4 5 4 5 6)

The two routes created after crossover are illegal because both go to at least one city

more than once. (2)

4.Currently used cross over operators which eliminate repetition

Goldbergs's partially-mapped crossover (PMX)

The PMX uses a series of swapping to avoid duplication of cities. For example,

there are two tours (3):

I
Tour 1 a b c d I e f g h

Tour 2 b d f a I g h c e
A A

One of the offsprings: b a h d e f c g

Davis' order crossver(OX)

OX tries to maintain the original city order in the parents in the condition of no

duplication. For the same example as above(3)

Tour 1 a b c d e f [g h

Tour 2 b d f a g h I c e
A A

One of the offsprings: a g h d e f c b

Oliver's cycle crossover (CX)

CX creates a legal offspring where every position is occupied by a corresponding

element from one of the parents by finding and combing the cycles in the parents. For

the same example as above (3)

Tour 1 a b c d e f g h

Tour 2 b d f a g h c e
A A

One of the offsprings:

a b f d g h c e

5. Proposed crossover method

In my proposed method of crossover I use grouping in order to limit the search of

the repeated and missing cities of each child after an initial single point crossover of the

initial parent routes. I then replace the repeated cities randomly with the missing cities

found as a product of selection and crossover. Mutation has yet to be included. The

program written is designed for routes consisting of 2^n cities. Test included 16 cities.

When using 16 cities the first step is to create a population of routes with each

route consisting of cities 0-15 (decimal numbers are used to represent cities). For my

example I used a population of 512 routes. Then single point cross over is used to

produce children. Once the children are created each route is taken one at a time until the

repeated cities in each route are replaced with the missing cities in each route. Each city

is placed in one of four groups depending on whether city<4, 4<=city<8,8<=city<12 or

12<=city<15. Next the number of repeats and cities in each group is calculated. Based on

the fact that there should be a total of four cities in each group the fitness of a city in each

group is determined by the (need of its respected group)/(sum of group needs). Next the

search for missing cities began. Binary values are now used to represent cities decimal

equivalent. An initial population of 8 cities is randomly created. Based on the fitness of

each city the roulette wheel method determines how many of each city you will have in

your next population. The next population is now crossed over at random cross points

(probability of each city crossing with another city =1). After crossing the cities if the

fitnessof a city which is calculatedby the (needof its respectedgroup)/(sumof group
needs)is >=theaveragefitnessof the cities then thatcity is searchedfor in its respected
group. The cities searchedfor and not found areconsideredmissing and areusedto
replacethe repeatedcities. With the missingcities found usedto replacerepeatedcities
your routewill becloserto havingno repeats.Thepreviousprocessis continueduntil no
repeatsarefoundin eachrouteandall theroutesgo to the 16distinctcities.

Conclusion

I have presented a method which may be used in any genetic algorithm problem which

uses a cross over that eliminates repetition and where each parent and child has to include

all elements of a population. The cross over method I proposed combines grouping

cross over and selection. Possible problems which may use this type of cross over are the

traveling salesman and the N-queen problem.

Further Research

The method I have proposed can be used for multiple points crossover methods. It allows

you to use any number of crossover points in the creation of each child. This versatility

will allow for a faster convergence to the optimum solution.

References

[1] http://qspr03.tuwien.ac.at/-aschatt/info/ga/genetic.html#AlgoSelectionSubSec

[2]Homaifar,Guan, and Liepins, "Schema Analysis of the Traveling Salesman Problem

Using Genetic Algortihms", pages 533-552 in Complex Systems Precedings (1992)

[3]Notes taken at NCA&T in ELEN-674-01

0

>.
0
r._
r._
0

r,.p
Z
0

o_

r_ .._

.= ._="_

r,..) ,_ _

O

_ O= Z
<

tit

_tD

olt

©
o_,ml

©

©

0

©
°Im_

_o

0
,.o
©

0

©

©

©

oTm_
©

©

©

©

©

Ct_

o

©

ovm_

o

_v_q

©

o

o

o

_ v©

Vm_

© ©

o o ©

©

©

©

©

gll

c_

olml o_ml_

ill © _

0 ©

"_ O0

t¢3

',0 O0

Cq tt,_
rJ _

C'4

0 0o
r.z)

°l, ml

i"-..
['4

_" VO

0 oCq

CP Vl_
tt'3

,_-
_,.

C_,._V ,--_

_ C',l

0 0

v_

o Vl_l_

e_'_

! =
2;

0 _,

0

0 "_ O_

_ ._

0 _

>

he3

,-2

,v-,I
o0 0

m _

",_ _
°,_,_

0 _

Initial Pop. Bin. To If(x) f(x)/sum Exp. Ct. Actual Ct.

0 1 0 0 1 9 0.333 0.0833 1.333 1

1 0 1 1 0 22 0.167 0.0412 0.667 1

1 0 0 1 1 19 0.167 0.0412 0.667 0

0 1 1 0 0 12 0.333 0.0833 1.333 2

1 0 0 1 1 19 0.167 0.0412 0.667 1

0 1 1 0 1 13 0.333 0.0833 1.333 1

0 1 1 1 0 14 0.333 0.8333 1.333 2

1 0 0 1 0 18 0.167 0.0412 1.333 0

0 1 1 0 1 13 0.333 0.8333 0.667 1

1 1 1 0 1 29 0.333 0.8333 1.333 2

1 0 1 1 1 23 0.167 0.0412 0.667 0

0 0 0 1 1 3 0.167 0.0412 0.667 1

1 1 0 0 0 24 0.333 0.8333 1.333 1

0 0 1 1 1 7 0.167 0.0412 0.667 1

1 0 1 0 1 21 0.167 0.0412 0.667 1

1 1 1 1 1 31 0.333 0.8333 1.333 1

First Selection of Mating Pool

Mating Pool After Cross Bin to Dec F l(x)

0/1001

1/0110

00110

11001

6 0.17

25 0.33

01/100

10/011

01011

10100

11 0.17

2O 0.33

0 1 1/00

011/01

01101

01100

13 0.33

12 0.33

0111/0

0110/1

01111

01100

15 0.33

12 0.33

01 1/1 0

111/01

01101

11110

13 0.33

30 0.33

1/1 000

0/0 1 1 1

10111

01000

23 0.17

8 0.33

10/101

11/111

10111

11101

23 0.17

29 0.33

000 1 1

11101

00101

11011

5 0.17

27 0.33

Search 9 cities (Highest Fitness)

Found 3 Missing (11,15, 29)

(-q

on 0 "_ o'_

_on

¢xl

o
O0

oo

O0

¢xl

fxl

0_

0

"_ _

°_.._

© ¢,q

©

0 _ on

©

o
0

O0

0

_q

_o0

o0 0

n_

o

© 0

Initial Pop. B. To D. f(x)2 f(x)2/sum f Exp. Ct.Act. Ct

01001

10110

10011

01100

10011

01101

01110

10O1O

01101

11101

10111

00111

11000

00111

10101

11111

9 0 0 0 0

22 0.33 0.1 1.6 2

19 0.33 0.1 1.6 1

12 0 0 0 0

19 0.33 0.1 1.6 1

13 0 0 0 0

14 0 0 0 0

18 0.33 0.1 1.6 2

13 0 0 0 0

29 0.33 0.1 1.6 1

23 0.33 0.1 1.6 2

3 0.33 0.1 1.6 1

24 0.33 0.1 1.6 2

7 0.33 0.1 1.6 2

21 0.33 0.1 1.6 2

31 0 0 0 0

Second Selection of Mating Pool

0

_D

e-I

,vl- cq

=acq
0

0 TM
'vl-

t"-

=acq
Ocq

',0

e,Ie',l ,..._

C,,1

_D

o em

© "_

_D

©

g.

II

0
II

11

II
_4

0,_,I

0"_

0

>

o
©

r_

©

t_

c',l

r,

t¢3

_ t_ _

_ t",l

o
•-_ ¢',1 _,1

_: cqt'-

©

,4,,,,o
r_

o

©

o

1)

e_

r..)

C_

0

©

Initial Pop. B to D f3(x) f3(x)/sum f3(x) Exp. Ct Act. Ct

O1O01 9 0 0 0 0

10110 22 0 0 0 0

10011 19 0 0 0 0

01100 12 0 0 0 0

10011 19 0 0 0 0

01 101 13 0 0 0 0

01110 14 0 0 0 0

10010 18 0 0 0 0

01 1 01 13 0 0 0 0

11101 29 0 0 0 0

10111 23 0 0 0 0

000 1 1 3 1 0.5 8 8

1 1 000 24 0 0 0 0

00111 7 1 0.5 8 8

1 01 01 21 0 0 0 0

11111 31 0 0 0 0

Third Selection Pool

Mating Pool

0/0011

0/0111

Crossed B to D

00111 7

00011 3

f3(x)

00/111 00111 3

00/01 1 0001 1 7

1

1

000/11 00011 3

000/1 1 0001 1 3

0011/1 00111 7

001 1/1 001 1 1 7

000/11 00011 3

000/1 1 0001 1 3

1

1

00/111 00011 3

00/01 1 001 1 1 7

0/0111 00011 3

0/001 1 001 1 1 7

001/11 00111 7

001/1 1 001 1 1 7

Searched 2 cities (3, 7)

Found 1 missing (7)

Final Seach Missing Cities

1

1

Mating Pool

1/0110

1/00 1 1

Crossed B TO D

1001 19

1011 22

F2(x)

0.33

0.33

10/1 10 1001

10/01 1 101 1

19

22

0.33

0.33

1 00/1 0 1 000 17

111/01 1111 30

0.33

0.33

1 O0 1/0 1 O01 19

1 01 1/1 1 01 1 22

0.33

0.33

000/1 1 000 1" 3

1 01/1 1 1 01 1 23

0.33

0.33

1 1/000 1 1 1 1 31

00/1 1 1 0000 0

0.33

0.33

1/0 1 0 1 1 1 00 24

1/1 000 1 0 1 0 21

0.33

0.33

1 0/1 0 1 1 0 1 1 23

00/1 1 1 001 0 5

0.33

O.33

Repeated 19(3), 22(3), 23(2)
Search 11 Cities

Found 2 Missing (19, 24)

